

www.strongtie.de

5						
Projekt				Job Ref.		
	Beispielb	emessung		22	14	
Bauteil			Seite / rev.			
Stützenfuß PP18/24BZ			1 /	1.4		
erstellt:	Datum					
Simpson	01.06.2021					

<u>Vorgabe</u>: Anschluss einer Holzstütze 120/120 mm an ein Fundament. Die Symbole sind auf der Seite 3 ergänzend erklärt.

Gewählt: PP18/24BZ (ETA-07/0285)

Anschluss an die Stütze mit 4 Schrauben TTZNFS6x100 (DoP-h17/0011) Die Berechnung der Tragfähigkeit der Schraube erfolgt nach EN1995 mit den in der DoP angegebenen Parametern.

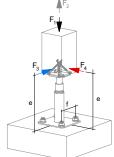
R_{ax.45.k}= 4222 N Schraubentragfähigkeit für Kraftfaserwinkel 45° (*siehe Nebenrechnung letzte Seite*)

4 Stück M10 Ankerbolzen BoAX II 10/10 (ETA-08/0276)

$$n_b = 4$$
 Abstände untereinander : $f = 94 \text{ mm}$

Lasten:

Folgende Lasten sind aufzunehmen:


 $F_{1.d} = 29.0 \text{ kN}$ Druck $F_{2.d} = 2.4 \text{ kN}$ abhebend

 $F_{3,d} = 1.2 \text{ kN}$

e = 240 mm

 $F_{4,d} = 0.7 \text{ kN}$

e = 240 mm

Die Lasten F_1 und F_2 wirken in Höhe der OK der Kopfplatte des Stützenfußes PP18/24BZ, hier wird die maximal mögliche Höhe angenommen, hier = e = 240 mm.

mit
$$k_{mod} = 0.7$$
 $\gamma_{M} = 1.3$

<u>Tragfähigkeiten R</u>_i (ETA-07/0285):

$$R_{1.k} = min(93.0 \text{ kN/k}_{mod}, 100.5 \text{kN / k}_{mod}^{0.6}) = 124.5 \text{ kN}$$

$$R_{2.k} = min(15.1 \text{ kN} / 4.88 \text{ kN} \times R_{ax.45.k}, 10.3 \text{ kN} / k_{mod}) = 13.1 \text{ kN}$$

$$R_{3.k} = R_{4.k} = min(3.4 \text{ kN} / 4.88 \text{ kN} \times R_{ax.45.k}, 2.0 \text{ kN} / k_{mod}) = 2.9 \text{ kN}$$

$$R_{1.d} = R_{1.k} \times k_{mod} / \gamma_M = 67.0 \text{ kN}$$

$$R_{2.d} = R_{2.k} \times k_{mod} / \gamma_M = 7.0 \text{ kN}$$

$$R_{3.d} = R_{4.d} = R_{3.k} \times k_{mod} / \gamma_M = 1.5 \text{ kN}$$

Nachweis kombinierte Beanspruchung:

$$(F_{1.d} / R_{1.d})^2 + (F_{3.d} / R_{3.d})^2 + (F_{4.d} / R_{4.d})^2 = 1.0 \le 1 \rightarrow ok$$

 $(29.0 \text{ kN/} 67.0 \text{ kN})^2 + (1.2 \text{ kN/} 1.5 \text{ kN})^2 + (0.7 \text{ kN/} 1.5 \text{ kN})^2 = 1.0$

$$(F_{2.d} / R_{2.d})^2 + (F_{3.d} / R_{3.d})^2 + (F_{4.d} / R_{4.d})^2 = 0.9 \le 1 \rightarrow ok$$

 $(2.4 \text{ kN}/ 7.0 \text{ kN})^2 + (1.2 \text{ kN}/ 1.5 \text{ kN})^2 + (0.7 \text{ kN}/ 1.5 \text{ kN})^2 = 0.9$

Projekt			Job Ref.		
Beispielbemessung			2214		
Bauteil			Seite / rev.		
Stützenfuß PP18/24BZ			2 /	1.4	
erstellt: Simpson	Datum 01.06.2021				

www.strongtie.de

Nachweis Verankerung im Beton - Bolzengruppe:

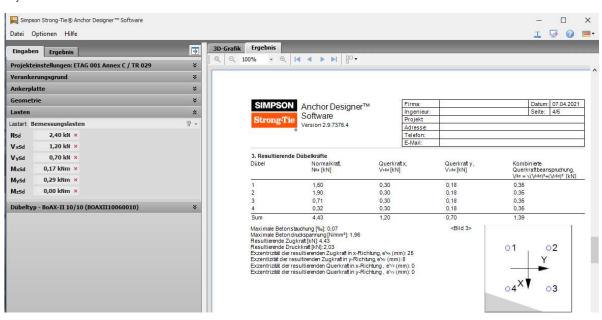
Für diesen Nachweis ist F2 die maßgebende vertikale Last.

Aus den Lasten F₃ und F₄ ergeben sich aufzunehmende Momente für die Bolzengruppe.

Zur Eingabe in ein Ankerbemessungsprogramm, z.B. AnchorDesigner, kann mit folgenden Eingaben ein

Nachweis geführt werden:

 $N_{Sd} = -F_{1,d}$ = -29.00 kN als Druck


 $N_{Sd} = F_{2.d}$ = 2.40 kN als Zug

 $V_{xSd} = F_{3.d}$ = 1.20 kN

 $V_{ySd} = F_{4.d}$ = 0.70 kN

 $M_{xSd} = F_{3.d} \times e$ = 0.29 kNm

 $M_{vSd} = F_{4,d} \times e$ = 0.17 kNm

Stützenanschluss - Fußpunkt Gewählt:

Simpson Strong-Tie Stützenfuß PP18/24BZ

Anschluss: - an die Stütze mit 4 Schrauben TTZNFS6x100 und

- an den Beton mit 4 Stück M10 Ankerbolzen BoAX II 10/10

 V_{xSd}

 V_{ySd}

Projekt		Job Ref.			
	Beispielb	emessung		22	214
Bauteil			Seite / rev.		
Stützenfuß PP18/24BZ				3 /	/ 1.4
erstellt: Simpson	Datum 01.06.2021				

kΝ

kN

Symbol	Erläuterung			
е	Vertikaler Abstand der Last F ₃ und F ₄ vom Boden			
f	Abstand der Bolzenlöcher, ggf. in x- und y- Richtung			
F _{boltax}	Zugkraft im Bolzen, ggf. mit Angaben von welcher Last			
F _{bolt.lat.x}	Scherkraft im Bolzen Richtung x	kN		
F _{bolt.lat.y}	Scherkraft im Bolzen Richtung y	kN		
F _{bolt.res}	resultierende Bolzenkraft	kN		
M _{xSd}	siehe Skizze AnchorDesigner *			
M_{ySd}	siehe Skizze AnchorDesigner *			
n _b	Anzahl Bolzen			
N _{Sd}	siehe Skizze AnchorDesigner *	kN		
R _{1.k}	Charakteristische Tragfähigkeit Lastrichtung 1	kN		
R _{2.k}	Lastrichtung 2	kN		
R _{3.k}	Lastrichtung 3	kN		
R _{4.k}	Lastrichtung 4	kN		
R _{ax45.k}	Charakteristische axiale Tragfähigkeit der Schraube unter einem Winkel von 45° zur Holzfaser	kN		

^{*} Eingabe der Lasten mit + bzw. - definiert die Richtung, siehe Grafik AnchorDesigner

siehe Skizze AnchorDesigner *

siehe Skizze AnchorDesigner *

www	stro	natie	.de

Projekt				Job Ref.		
Beispielbemessung			2214			
Bauteil			Seite / rev.			
Stützenfuß PP18/24BZ			4 /	/ 1.4		
erstellt: Simpson	Datum 01.06.2021					

Nebenrechnung

Berechnung Tragfähigkeit der Schraube: TTZNFS6x100 (DoP-h17/0011)

Nenndurchmesser	d_{screw}	=	6	mm
Kerndurchmesser	$d_{\text{screw,core}}$	=	3.8	mm
Gesamtlänge Schraube	I _{screw,tot}	=	100	mm
Gewindelänge	I _{screw,ef}	=	60	mm
Fließmoment	$M_{y,k}$	=	12280	Nmm
Auszugsparameter	$f_{ax,k}$	=	17.2	N/mm²
Rohdichte	ρ_k	=	350	kg/m³
Angle	α	=	45	0

 $k_d = min(d_{screw}/8,1) = 0.750$

EN1995-1-1:2004+A2:2014 Formel (8.40a)

Mit fax,k entsprechend der DoP-h17/0011

 $F_{ax.90.k} = f_{ax,k} \times d_{screw} \times I_{screw,ef} \times k_d = \textbf{4644 N}$

 $F_{ax.45.k} = f_{ax,k} \times d_{screw} \times I_{screw,ef} \times k_d \ / \ (\ 1.2 \times cos(\alpha)^2 + sin(\alpha)^2 \) \ = \textbf{4222 N}$